1. Material from Exams 1-2
2. Fronts and Frontogenesis
 a. Three dynamic characteristics of fronts
 b. What is frontogenesis (describe in words or physically)?
 c. Role of various kinematic terms of frontogenesis
 i. In particular, what about vorticity (is it frontogenetical or not and why)?
 d. What type of vertical circulation is induced by positive frontogenesis (thermally direct or indirect, and why)
 i. Difference between thermally direct/indirect circulations
 e. Sawyer-Eliason
 i. Deformation forcing terms
 ii. Ageostrophic secondary circulation that is induced
 f. Relationship of S-E circulation and Frontogenesis to Q-vectors
 i. Relation to sign of Q forcing for thermally direct/indirect circulation
 ii. Division of Q-vectors into normal coordinates (Qs and Qn)
 1. Direction of Qn to imply Frontogenesis/Frontolysis
 2. What does Qs represent?
 g. Semi-geostrophic assumptions versus QG
 i. How would fronts be if only considering QG effects?
 h. Upper Fronts (why do we care about them?)
 i. Role of thermally indirect circulation in formation, relation to Q(S-E)
 ii. Impact of having cold (warm) thermal advection along jetaxis
1. Precipitation Processes along fronts
 a. Three ingredients (forcing, sufficiently weak static stability, sufficient moisture)
 b. Role of static stability in types of ascent/descent
 c. Slantwise instability and negative PVe
 i. Can exist even if no gravitational or inertial instability
 ii. Relative slope of M versus Theta E for slantwise Instability
 iii. Relationship to sign of PVe
2. Cyclogenesis
 a. Norwegian Cyclone Model / Polar Front Theory
 b. Vorticity Equation Perspective
 i. Exponential growth in areas of larger than average background vorticity
 c. Continuity Perspective
 d. Importance of wavelengths for forcing strength
 e. Self-Development (Sutcliffe-Petterssen)
 i. Feedback mechanism
 ii. Thermal advection perspective
 iii. Relate to (2) and be able to describe from PV perspective
 f. Role of Latent Heating in accelerating cyclogenesis
3. Isentropic/Ertel Potential Vorticity
 a. What is it and why is it important?
 b. What are two important characteristics of PV and how is it used to described dynamic parts of that atmosphere?
 c. What are the two main attributes of all positive PV anomalies?
 d. Under what circumstances is PV “created/destroyed” (really, redistributed)?
 i. How/why is this useful?
 e. Use of isopleth of PV (1.5-2.0 PVU surface) to define dynamic tropopause
 i. Tropopause cold perturbations as positive PV anomalies
 f. Surface warm anomalies can be treated as positive PV anomalies